US009311102B2

a2 United States Patent

(10) Patent No.: US 9,311,102 B2

Shah et al. (45) Date of Patent: Apr. 12,2016
(54) DYNAMIC CONTROL OF SIMDS (56) References Cited
(75) Inventors: Tushar K. Shah, Orlando, FL (US); U.S. PATENT DOCUMENTS
Michael J. Mantor, Orlando, FL. (US); 5452401 A 9/1995 Lin
Brian Emberling, Palo Alto, CA (US) 7,594,095 B1* 9/2009 Nordquistccccccevnee. 712/22
(Continued)
(73) Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this ig 20013848;%% ﬁ égggg
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 0 days. (Continued)
OTHER PUBLICATIONS
(21) Appl. No.: 13/180,721 F.J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, J. Renau, Mea-
suring Power and Temperature from Real Processors, 2008, IEEE
(22) Filed: Jul. 12, 2011 International Symposium on Parallel and Distributed Processing,
Miami, FL. DOT: 10.1109/IPDPS.2008.4536423 .*
(65) Prior Publication Data (Continued)
US 2012/0013627 Al Jan. 19, 2012 Primary Examiner — Xiao Wu
Assistant Examiner — Michael J Cobb
Related USS. Application Dat (74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.
elated U.S. Application Data
(60) Provisional application No. 61/363,856, filed on Jul. 7 ABSTRACT
13, 2010. Systems and methods to improve performance in a graphics
processing unit are described herein. Embodiments achieve
power saving in a graphics processing unit by dynamically
(31) Int.Cl activating/deactivating individual SIMDs in a shader com-
Gool” 9/38 (2006.01) plex that comprises multiple SIMD units. On-the-fly dynamic
GO6F 1/32 (2006.01) disabling and enabling of individual SIMDs provides flex-
(Continued) ibility in achieving a required performance and power level
for a given processing application. Embodiments of the
(52) US.Cl invention also achieve dynamic medium grain clock gating of
CPC s GO6F 9/3867 (2013.01); GO6F 1/3203 SIMDs in a shader complex. Embodiments reduce switching
(2013.01); GO6F 173237 (2013.01); power by shutting down clock trees to unused logic by pro-
(Continued) viding a clock on demand mechanism. In this way, embodi-
. . . ments enhance clock gating to save more switching power for
(58) Field of Classification Search the duration of time when SIMDs are idle (or assigned no

CPC . GO6F 1/3203; GOGF 1/3237, GOGF 9/30101;

GOGF 9/3842; GOG6F 9/3867; GOGF 9/5094;

GO6T 15/005; YO02B 60/1221; YO02B 60/142

USPCcceueee 345/501, 519, 522; 712/1, 220-222
See application file for complete search history.

work). Embodiments can also save leakage power by power
gating SIMDs for a duration when SIMDs are idle for an
extended period of time.

16 Claims, 14 Drawing Sheets

‘Shader Core

Shader Engine 120 Enable | Toan Coe 1.

! Shader Engine 120 -
[,j
; vasr e | 5

| 1 Shader Engine 122 |
1

! i
: |
! —
!

!

pas s HIRSS

¢
H —
Sequencor S Contoler Shader Cortler
}ISIMD, S))
I :
1

b R
i Shater Carto

LD, S Lot [

i L5 ” i

Vi

i

i
N TediFAT, | |
beedTIRSS o) e

CC_GC_SHADER_PIPE_CONFIG [RAW]

DESCRIPTION: Configure stiader pipé topology

Field Name Bits Default

Description

INACTIVE_QD_PIFES 58 OXFF

Bit-maskof which quad-pipes are inactive
Q=active; 1 =inactive
QPs can be disabled a column at a ime, not different
SP's per SIMD.

INACTIVE_SIMDS 31:16 | OXFFFF

Bit-mask of which SIMDs are inactive
0 = active: 1= inaetive

US 9,311,102 B2

Page 2
(51) Int.CL 2009/0249094 A1* 10/2009 Marshall et al. 713/320
GOGF 9/30 (2006.01) 2009/0328055 Al 12/2009 Bose et al.
2010/0037038 Al 2/2010 Bieswanger et al.
G061 15/00 (2011.01) 2010/0094572 Al* 4/2010 Chase etal. 702/57
GOGF 9/50 (2006.01) 2010/0169680 AL* 7/2010 SEHUIK woovvoroerereroerrio 713/320
(52) US.CL 2010/0174923 Al 7/2010 Houlihan et al.
CPC GO6F9/30101 (2013.01); GOGF 9/3842 2011/0004575 Al* 122011 Yangetal. ...cooconnee 713/300
. ’ ; 2011/0018707 Al* 1/2011 Dobson etal. 340/539.13
(2013.01); G06F9/5094 (2013.01); G06T. 2011/0173474 Al* 7/2011 Salsberyetal. 713/323
15/005 (2013.01); YO2B 60/1221 (2013.01); 2011/0245981 Al* 10/2011 Refai-Ahmed etal. 700/282
Y02B 60/142 (2013.01) 2013/0339762 Al* 12/2013 Boseetal. ..c.cooovvne... 713/300
(56) References Cited FOREIGN PATENT DOCUMENTS

7,716,506
2003/0229814
2005/0228967
2006/0053189
2006/0080559
2006/0156042
2006/0282646
2007/0074054
2007/0083699
2007/0101013
2007/0234077
2007/0294558
2008/0041951
2008/0059966
2008/0143730
2008/0189524
2008/0204460
2008/0301792
2008/0307240

U.S. PATENT DOCUMENTS

BL*
Al*
Al*
Al*
Al*
Al*
Al*
Al

Al*
Al*
Al

Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*

5/2010
12/2003
10/2005

3/2006

4/2006

7/2006
12/2006

3/2007

4/2007

5/2007
10/2007
12/2007

2/2008

3/2008

6/2008

8/2008

8/2008
12/2008
12/2008

Surgutchik et al. 713/321
Garnett 713/322
Hirairi .. L 712/1
Mantor 708/490
Sauber 713/300
Desai et al. 713/300
DockSerooovvveverivnininnn 712/4
Chieh

Suricoetal.coovrnen. 711/103
Howson 709/231
Rothman et al.

Desaietal.cccoennenne 713/340
Adams et al. ... 235/435
Duetal. 718/102
Lindholm et al. ... 345/501
Poonetal. 7120221
Marinkovic et al. ... 345/502
Hong 726/9
Dahanetal.c...... 713/320

JP 2008299642 A 12/2008
WO WO 2005/088443 A2 9/2005
WO WO 2009/091369 Al 7/2009
WO WO 2009/120427 A1 10/2009

OTHER PUBLICATIONS

Yan Luo, Jia Yu, Jun Yang, Laxmi Bhuyan, Low Power Network
Processor Design Using Clock Gating, 2005, IEEE/ACM Design
Automation Conference (DAC), Anaheim, California, retrieved from
<<http://nepsim.cs.ucr.edu/nepsim/>>, accessed Oct. 26, 2015.*
Fung, Wilson W. L., et al., “Dynamic Warp Formation: Efficient
MIMD Control Flow on SIMD Graphics Hardware,” in ACM Trans.
Archit. Code Optim. 6(2):1-37 (Jun. 1, 2009).

International Search Report and Written Opinion for International
Application No. PCT/US2011/043509, FEuropean Patent Office,
Netherlands, mailed on Jan. 31, 2012 (19 pages).

* cited by examiner

US 9,311,102 B2

Sheet 1 of 14

Apr. 12,2016

U.S. Patent

VAR E

LE X]

qlllllllllll'_ — III o |

| I |

| (I I

_ (.]
| I

_ LA I b e oo v seoss st i pR ARS8 SRS £ RR s A b peAererene et !

“ o iy

_ -
| ! H 1

| ‘ (#dS) (#dS) 45 (08) i
[3 (dopapeny . anis:

" “ “ ﬁe. < C ma_mm_axw.— , ..m__ob:”uo Japeys ._m_“o._u“_“uo iopeys L_wucwwz_uwm "

I 4 : il
| | H

" “ " [T NSO UTURTUUTUTTITE SRRy o porin "

“ Y Pl Y onw oy “

|

| e !

[! D : I

“ _ “ a ODH0R lgj S gt 2%t] 9 eﬁmwu_mww 2 {rds) ° hmom_wam wn=>__w "

| sow DoY) sganey OO0 BpEHS _m__gwwo 1OpELS % 51 !
Il , i

" “ " ... _

I

| Lo *OY e . (Bids)aners | - (IdS orsep |

I _ | Jogjodiapy ® i0jejodiau| |

| CC) dubug lopeys || 0z} suibug Jepeys |

A SI9eU3 Oz}, SUIBUT Jopeus

2100 Japeyg

US 9,311,102 B2

Sheet 2 of 14

Apr. 12,2016

U.S. Patent

dil "ol

SAlDeUl = | laAlpe

=0 4d444X0
oAnOBUI 918 SQNIS YIUM JO dsew-lig |

9L:Le

SAWIS 3AILOVNI

AnIs 18d s ds

JUSJBYIp JOU ‘aull} B Je uWin|od B pajgesip 8q ued sq4d
SAjoRUl = | 'BAIJOB =)
aAioeul aJe sadid-prenb Loiim 10 sisewl-iig

44X0

8:G1

S3did a0 IALLOVYNI

uonduosaq

Hneiaq

sig

sweN pioid

KbBojodo) adid sepeys ainbyuo) ‘NOILdI¥OS3d

el ©IINOD 3dId "3AVYHS 99 09

US 9,311,102 B2

Sheet 3 of 14

Apr. 12,2016

U.S. Patent

Ji "9Old

SAOBUI = | 19AJOE = 0 0X0 olile LSANIS ANILOVNI
SAOBUL B8 SIS HDIUM JO Yseu-ig
QWIS 30548
WSIBLID 10U 'Sl B 1B LN B DSIGESID 90 UBD S4D : e ”
BAIOBU = | [BAROE = () 0X0 8:gl 1S3ddid A0 IALLOVYNI
. Brioed aie sodid-DEND USIUM O NSBUINE 1 e
uoyduosa(Inegsq sug | SwenN pl
DIINOD Idid WIAYHS 09 00 4o Adod mopeys ‘NOILINOS3a

wl L3did H3AVHS 29 20 NoY

BAljoBUl = | BAIOE = (
aAjoeUl 81B S(JINIS YOIUM JO HSe-jig

0X0

SAWIS JAILOWNI

AnIsS Isd s ds
JUSIBYIP 10U ‘Sl B JB UWNjod e pajgesip aq ues sdo
SAIOBUI = | ‘OAl0E = 0
onioeul 9ie sadid-penb YoM O ¥Seiu-lig

0X0

86l

S3did a0 3AILOVYNI

uonduossaq

iinejeq

sig

SWwieN pist

OI4ANOD Idid ¥3AAVHS 09 20 jo Ados mopeys :NOILdINOS3a

[¥] 3did " ¥3avHS 09 20 NOY

US 9,311,102 B2

Sheet 4 of 14

Apr. 12,2016

U.S. Patent

at "old

BAIJ0BUl = | 8AoE =
SAljoeuUl 81 SIS UdIym JO ysewu-jig

0Xo0

9i:L€e

SANIS IALLOVYNI

anIs 8¢ s ds
Juslisyjip Jou ‘swil} B e uwnjod e pajgesip aq ued s4o
DAljoRUL = | [BAIOE = ()
eAljoeul ai1e sadid-penb LDIUM 0 Hsew-iis

0ox0

86l

S3did A0 INAILOVN;

uonduosaqg

neisq

shg

SWeN pjeid

ABojodoy adid Jepeys ainbluod INOILJIHDSAA

Wl 91ANOD 3did 43avHS H{3sn 29

Z '9Old

WL OM ‘ 'S

US 9,311,102 B2

Sheet 5 of 14

Apr. 12,2016

U.S. Patent

foviamis

LAWIS

odanis

NO=LAWIS> /"
“NO=0aWIS />,

- ¥

/No=LamIs | A
“NO=0amIS /440=0aNIS, 440=0aNIS, 440=0aNIS, *40=0ANIS, “NO=0aWIS / “NO=0aWIS

g
e

o

*

¥

3

3

wn wn L own Jun

 anixal

X

ayoe)

¥

io1gjodisul
| aepsey

'
&

BAB(S anels

 eneg

RIAOY-HHOM

US 9,311,102 B2

Sheet 6 of 14

Apr. 12,2016

U.S. Patent

OOWIS | FOMIS | COWIS | EaWIS | POWIS | SOWIS | 9QINIS | ZAWIS] SQWIS | 6aNIS | Sod | Ssd | S8y | sed | sad| say
7] LTy 6l oA B B T I O 77 8 N -7 R 1 1 S - I - I V7 M - B G B S R S
g gl g g 19 va ug g ngi wai wgi ugi wgi wgi ygi ng

BANCOBUL = | 1BAIDE = { 0x0 9L:1g SANIS IALLOVNI
SANOBUL GUB SIS HOIUM JO MSEU-Ig
_ uondiossg nejeq s\g | swen pield

ABojodo} adid Japeys ainbiuod NOLLAIYOS3IA

[Mrd] O1INOD 3dId ¥3AVHS ¥3sn 299

US 9,311,102 B2

Sheet 7 of 14

Apr. 12,2016

U.S. Patent

g¢ "Old

"SOllIM - -
oy} ssao0ud jim sauibua Jspeys |je usyl ‘pajqeus § L X0 Le SILIM LSYOAvOud 35
"SejlIM 8y} ss800.d ||im S8duejsul fje usy) ‘pejqeus ji 1 X0 o€ STALIMM ™ LSVYOavOdd IONVLSN

0=S3LIYM LSYOavoud 3S N
J1 SOJUM 10} pijeA AluQ "sajm 0xo 9l-€c X3ANI 38
/speai sseooud Im (Fg) suibuas Jepeys ouisads Yoy
0=S3 LM 1SYOavOodd FONVLSNI _
41 s8)M 10} pljeA AluQ "SajLIM 0Xx0 0L X3ANI 3ONYLSNI
/speai ssa004d [jIM M00|q B Jo aduBisul di198ds YOIUA
uonduosaq . mneea | sug sweN pieid

Jeis1Bay xapuj soydels) INOILdIN0S3A

[Wd] XIANI™X49 Ngyo

U.S. Patent

Apr. 12,2016 Sheet 8 of 14

 Required performance level for a

given application is determined

Y

One or more registers are
configured to enable and disable
SIMDs in shader engines

¥

"One or more SIMDs are enabled
and disabled based on registers
configured in step 304.

FIG. 3C

302

(..M.WJ

304

306
ot

US 9,311,102 B2

U.S. Patent Apr. 12,2016 Sheet 9 of 14 US 9,311,102 B2

®
2
o
o
o
o !
S
n
= ,,.'{
c)
9 '8 E
[
5 2 &
(@] g AR
o o L.
g ‘G
| -
> (0]
< Qo
£
3
Z
I o0 w <F 22 [a\3 Al

MO D307

US 9,311,102 B2

Sheet 10 of 14

Apr. 12,2016

U.S. Patent

SCNIS J0 Jequinp
o 6 8 2 95 § ¥ € T |

nem/uad g

peoT jespl

U.S. Patent Apr. 12, 2016 Sheet 11 of 14 US 9,311,102 B2

erfwat,

Q|

%
§

Balanced Load

FIG. 4C

Number of SIMDs

U.S. Patent Apr. 12, 2016 Sheet 12 of 14 US 9,311,102 B2

Realistic Load

FIG. 4D

Number of SINMDs

pem/uod

U.S. Patent Apr. 12,2016 Sheet 13 of 14 US 9,311,102 B2

FIG. 4E

Light Load

Number of SiMDs

12

o o0 € <t o o
-—

nesmyuad

U.S. Patent Apr. 12, 2016 Sheet 14 of 14 US 9,311,102 B2

o et

FIG. 4F

Medium/Heavy Load

Number of SIMDs

US 9,311,102 B2

1
DYNAMIC CONTROL OF SIMDS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of U.S. Provi-
sional Patent Application No. 61/363,856, filed Jul. 13, 2010,
entitled “Dynamic Control of SIMDs,” which is incorporated
herein by reference in its entirety.

BACKGROUND

1. Field

Embodiments of the present invention generally relate to
control of single instruction multiple data (SIMD) units in
graphics processing units (GPUs).

2. Background Art

A math unit of a graphics processor includes arithmetic
logical units (ALUs) or math units configured to perform
integer, logical and single/double precision floating point
operations.

Graphics processors can include an array of such math
units, known as a shader core. A shader core includes a shader
pipeline (SP). To achieve higher performance, multiple SPs
can be configured to work together as stacked SPs. SPs can be
structured as an array of quad pipes (QPs) and SIMDs. All
shader units of each SIMD can conditionally execute an iden-
tical ALU instruction on different sets of primitive, vertex, or
pixel values. In this way, SIMDs provide mathematical pro-
cessing power to a graphics processor.

In conventional graphics processors having stacked SPs,
SIMDs can be enabled or disabled statically. For example, if
a SP was determined to be faulty, a fuse mask can be pro-
grammed to disable the faulty SP. Similarly a user accessible
register can be programmed to disable/enable a specific
SIMD or group of SIMDs. However, such methods require
flushing of a graphics pipe of the graphics processor and
reprogramming of new values into the flushed graphics pipe
before sending new work requests to the SIMDs.

Furthermore, in conventional approaches, clocking of all
SIMD units in a shader complex is either enabled or disabled
simultaneously. In many applications, not all SIMDs are
assigned work. However, conventional approaches continue
to actively provide clocking signals to such SIMDs. This
approach can increase power consumption of a graphics pro-
cessor and is inefficient.

Accordingly, systems and methods are needed that enable
dynamic control of SIMDs and reduce power consumption of
a graphics processor when SIMDs may not be performing
processing tasks.

BRIEF SUMMARY OF EMBODIMENTS OF THE
INVENTION

Embodiments ofthe present invention enable power saving
in a graphics processing unit by dynamically activating and
deactivating individual SIMDs in a shader complex that com-
prises multiple SIMDs. On-the-fly dynamic disabling and
enabling of individual SIMDs provides flexibility in achiev-
ing a required performance and power level for a given pro-
cessing application. In this way, optimal usage of the graphics
processing unit can be achieved.

Embodiments of the invention also achieve dynamic (also
referred to here as dynamic medium grain) clock gating of
SIMDs in a shader complex. Switching power is reduced by
shutting down clock trees to unused logic by providing a
clock on demand mechanism. In this way, clock gating is

10

15

20

25

30

35

40

45

50

55

60

65

2

enhanced to save more switching power for the duration of
time when SIMDs are idle (or assigned no work).

Embodiments of the present invention can be used in any
computing system (e.g., a conventional computer (desktop,
notebook, etc.) system, computing device, entertainment sys-
tem, media system, game systems, communication device,
personal digital assistant), or any system using one or more
processors.

Embodiments of the present invention, for example, may
be used processing systems having multi-core CPUs, GPUs,
and/or GPGPUs, because code developed for one type of
processor may be deployed on another type of processor with
little or no additional effort. For example, code developed for
execution on a GPU, also known as GPU kermels, can be
deployed to be executed on a CPU, using embodiments of the
present invention.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated in
and constitute part of the specification, illustrate embodi-
ments of the invention and, together with the general descrip-
tion given above and the detailed description of the embodi-
ment given below, serve to explain the principles of the
present invention. In the drawings:

FIG. 1A illustrates a shader complex according to an
embodiment.

FIGS. 1B-1D are registers that can be configured to control
SIMDs, according to an embodiment.

FIG. 2 illustrates an exemplary timing diagram, according
to an embodiment.

FIGS. 3A-3B illustrate exemplary register settings for
enabling and disabling SIMDs, according to an embodiment.

FIG. 3C is a flowchart illustrating an exemplary operation,
according to an embodiment.

FIGS. 4A-4F illustrate exemplary performance plots,
according to embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

As discussed above, embodiments of the present invention
enable power saving by dynamically activating and deacti-
vating individual SIMDs in a shader complex.

Embodiments dynamically disable SIMDs for either
reduced performance needs or to lower thermal design power
(TDP) of a graphics processing unit. Furthermore, embodi-
ments enable disabled SIMDs for high performance applica-
tions without having to flush a graphics pipe of the graphics
processing unit. This is achieved by dynamically switching a
number of SIMDs without flushing the SP. Dynamic control
(or switching) is achieved, in part, by programming a set of
registers appropriately.

In an embodiment, a shader pipe interpolator (SPI) assigns
new work (or threads) based on registers that are configured
dynamically to indicate which SIMDs are activated. In an
embodiment, such dynamic configurations would take effect
after current in-flight requests (or pending requests) are ser-
viced by SIMDs that are to be disabled. Once disabled, no
new requests from the SPI will go through to the disabled
SIMDs and clocks of harvestable logic (e.g., sp4-vsp and
texture clocks) are shut-oft to reduce switching power of the
graphics processing unit. When the disabled SIMDs are
enabled, the SPI will again start allocating work to the
enabled SIMDs providing higher performance of the graphics
processing unit.

US 9,311,102 B2

3

In an embodiment, activation and deactivation of the
SIMDs and a number of SIMDs to be activated/deactivated is
dependent on various factors such as operating conditions
(e.g., temperature, current, CAC), applications (e.g., variable
utilization to conserve energy), work load, or other require-
ments (e.g., performance needs, power needs).

Dynamic Control of SIMDs

FIG. 1A illustrates an exemplary shader complex 100, in
which embodiments of the present invention are imple-
mented. As discussed above, a shader complex can include a
shader pipeline (SP). To achieve higher performance, mul-
tiple SPs can be configured to work together as stacked SPs.
SPs can be structured as an array of quad pipes (QP) and
SIMDs. All shader units of each SIMD can conditionally
execute an identical ALU instruction on different sets of
primitive, vertex, or pixel values. In an embodiment, shader
complex 100 includes a plurality of SIMDs and two shader
engines, namely, shader engine 120 and shader engine 122.
Shader complex 100 also includes texture cache (TCC) 130
(or a level 2 texture cache), a plurality of shader pipe inter-
polators (SPIs) and vertex caches. Also included in shader
complex 100 are a plurality of redundant shader switches
(RSS), shader sequencers (SQ), level 1 texture caches (TCPs)
and texture data logic (TD). (Although a lesser number of
SIMDs are shown for clarity, it is to be appreciated that the
invention is not limited to the illustrated embodiment and that
shader complex 100 is scalable and can include any number
of SIMDs.)

As discussed above, embodiments of the present invention
dynamically switch a number of SIMDs without flushing the
SP. Such dynamic control (or switching) is achieved, in part,
by programming a set of registers appropriately. In an
embodiment, an SPI assigns new work (or work threads)
based on registers that are configured dynamically to indicate
which SIMDs are activated.

The following section discusses exemplary registers that
control the SIMD and QP masks.

FIG. 1B illustrates a register named as “CC_GC_SHAD-
ER_PIPE_CONFIG.” In an embodiment, this register is pro-
grammed by a reset/configuration unit (RCU) based on fuse
mask settings. As an example, this register can be pro-
grammed for harvesting purposes. This register has two
fields; INACTIVE_QD_PIPES and INACTIVE_SIMDS.
INACTIVE_QD_PIPES is a bit-mask that represents which
quad-pipes are inactive. INACTIVE_SIMDS is a bit-mask
that represents which SIMDs are inactive.

Similarly, “RCU_CG_GC_SHADER_PIPE” and the
“RCU_CC_GC_SHADER_PIPE1” register illustrated in
FIG. 1C, are shadowed versions of the “CC_GC_SHA-
DER_PIPE_CONFIG” register. These registers are pro-
grammed based on a fuse mask or microcode. The RCU_
CG_GC_SHADER_PIPE register has two fields: INAC-
TIVE_QD_PIPES and INACTIVE_SIMDS. INAC-
TIVE_QD_PIPES is a bit-mask that represents which quad-
pipes are inactive. INACTIVE_SIMDS is a bit-mask that
represents which SIMDS are inactive. Similarly, the
RCU_CG_GC_SHADER_PIPE1 register has two fields;
INACTIVE_QD_PIPESI and INACTIVE_SIMDSI1. INAC-
TIVE_QD_PIPES] is a bit-mask that represents which quad-
pipes are inactive. INACTIVE_SIMDSI1 is a bit-mask that
represents which SIMDs are inactive.

The register “GC_USER_SHADER_PIPE_CONFIG,”
shown in FIG. 1D, is programmable by a user to limit a
number of operating SIMDs (and/or QPs). This register can
be memory mapped and shadowed by a shader engine per an
index received from a graphics register bus manger (GRBM).
This register has two fields: INACTIVE_QD_PIPES and

10

20

25

30

35

40

45

50

55

60

65

4

INACTIVE_SIMDS. INACTIVE_QD_PIPES is a bit-mask
that represents which quad-pipes are inactive. INACTIVE_S-
IMDS is a bit-mask that represents which SIMDs are inactive.

The register settings of “CC_GC_SHADER_PIPE_CON-
FIG” (FIG. 1B) are static in nature and are programmed once
for a chip. In contrast, settings of the register “GC_
USER_SHADER_PIPE_CONFIG” register can be pro-
grammed at any time dynamically (i.e., on-the-fly). Embodi-
ments of the invention configure the “GC_USER_SHA-
DER_PIPE_CONFIG” register for dynamic control of
SIMDs.

In an embodiment, the resultant ORed value of “CC_
GC_SHADER_PIPE_CONFIG” register and the “GC_US-
ER_SHADER_PIPE_CONFIG” register is used by the SPIto
determine (on the fly) enabled SIMDs to whom new threads
(work) are to be assigned. In an embodiment, all other design
blocks in the graphics pipe make use of the “CC_GC_SHAD-
ER_PIPE_CONFIG” register to statically disable themselves
for inactive SIMDs/QPs. In an embodiment, such design
blocks need not review the “GC_USER_SHADER_
PIPE_CONFIG” register when such an operation causes an
undesirable ‘freezing’ of the shader pipeline.

Referring to the exemplary timing diagrams illustrated in
FIG. 2, control of SIMDs can be achieved independent of
activity in a shader engine. Even if a particular SIMD is busy
executing instructions, embodiments can disable that SIMD
during its active execution period. For example, referring to
FIG. 2, SIMDO can be disabled during its active execution
period.

In an embodiment, not intended to limit the invention, the
SPIdoes not assign work to a disabled (or de-activated) SIMD
until the disabled SIMD is re-enabled. The disabled SIMD
naturally drains work threads on completion of current work
in it and pending work in a sequencer pipe. Once empty,
medium grain clock gating (described further below) can
disable clock signals to logic in the disabled SIMD. On re-
enabling of a disabled SIMD, the SPI again starts submitting
new threads (work requests) to the enabled SIMD. SIMD
control settings are programmed through GRBM register
writes and can be dynamically set by a driver or microcode.

From a system design perspective, SIMDs can be enabled
or disabled at any time (i.e., on the fly). From a power savings
perspective, a time of switch over from a SIMD enabled to
SIMD disabled state can depend on workload pending in the
SIMD pipe. The time needed to enable a disabled SIMD (or
vice versa) is as fast as writing a GRBM register when an SPI
is ready to allocate threads to that SIMD. As an example, for
both cases, the time needed can be only a few clock cyclesi.e.,
a few nano-seconds.

Exemplary Scenarios of Operation

The following are exemplary operational scenarios where
embodiments of the invention and dynamic control of SIMDs
are used.

A. Condition Based Control

Dynamic control of SIMDs can be condition dependent.
Such exemplary conditions include, but are not limited to:

(1) Temperature Trip: When external sources indicate a
higher processor temperature and there is a need for reduction
in power consumption (or boost when applicable).

(2) Current Trip: When external sources indicate a higher
processor current and there is a need for reduction in power
consumption (or boost when applicable).

(3) CAC Management: When an on-chip CAC manager
notices increased processing activity and makes a decision to
increase performance by enabling more SIMDs or when the
on-chip CAC manager notices decreased activity and makes a
decision to reduce power by disabling a number of SIMDs
without reduction in performance.

US 9,311,102 B2

5

B. Application Based Control

Dynamic control of SIMDs can also be application depen-
dent. Such exemplary applications include those that allow
variable utilization to conserve energy. For example, a
detected change in user mode of application from more pro-
cessor intensive application (e.g., 3D graphics processing) to
a less intensive application (e.g., DVD playback) can be used
for dynamic control of SIMDs, according to the embodi-
ments. User and application input through, for example, user
interface (UI) input mechanisms or application programming
interfaces (APIs) may also be employed to provide dynamic
control of SIMDs. These input mechanisms can be used to set
the required power level for a processing application or to
achieve optimal performance/watt for the hardware. Such
input mechanisms can be enabled through software (e.g.,
applications or operating systems), firmware, hardware or
various combinations thereof.

C. Work Load Based Control

Dynamic control of SIMDs can be work load dependent.
By way of example, dynamic control of SIMDs can be trig-
gered based on one or more of the non-limiting exemplary
GPU conditions listed below.

(1) Static screen condition (No Load) (<5% of TDP)

(2) Idle condition (very Light Load) (<10% of TDP)

(3) Medium load condition (<50% of TDP)

(4) Heavy load condition (<90% of TDP)

(a) ALU bound

(b) Texture fetch bound

(c) Memory throughput bound

(5) Very heavy load condition (>90% of TDP)

D. Requirement Based Control

Dynamic control of SIMDs can be requirement dependent
and based on performance needs as well as power needs. A
driver monitors GPU TDP and on approaching maximal TDP
loads, disables SIMDs to reduce TDP. Such disabling of
SIMDs can be accomplished with our without GPU fre-
quency and voltage tuning.

The above exemplary control conditions can be detected
and implemented using a driver and/or microcode. Embodi-
ments can also allow controls dedicated to self-controlling the
number of enabled SIMDs.

Exemplary Register Settings for Enabling and Disabling
SIMDs

In any of the above mentioned conditional modes (or any
other scenarios), a driver can write to bit fields (e.g., bit fields
[31:16]) of register “GC_USER_SHADER_PIPE_CON-
FIG” to disable and enable SIMDs. As shown in FIG. 3A,
writing “0” enables the SIMD and writing “1” disables the
SIMD.

A graphics processing unit can include two or more shader
engines (e.g., SEO and SE1). In this scenario, embodiments
can enable and disable different SIMDs for these shader
engines. This can be achieved by programming the shader
engines separately using a GRBM index register as illustrated
in FIG. 3B.

Referring to FIG. 3B,

(1) To write to “GC_USER_SHADER_PIPE_CONFIG”
of SEO (i.e., shader engine 0), the following exemplary
instructions can be used:

mmGRBM__GFX__INDEX = 0x40000000 //point to SEO
mmGC__USER_SHADER__PIPE_ CONFIG = OxFFO00000 //disable
//SIMD8 and SIMD9

mmGRBM__GFX__INDEX = 0xC0000000 //restore the GRBM index
//register to default

10

15

20

25

30

35

40

45

50

55

60

65

6
(2) To write to “GC_USER_SHADER_PIPE_CONFIG”
of SEO (i.e., shader engine 0), the following exemplary
instructions can be used:

mmGRBM_ GFX_ INDEX = 0x40010000 //point to SE1
mmGC_USER_SHADER_ PIPE_ CONFIG = 0xFC030000 //disable
//SIMD1 and SIMDO
mmGRBM__ GFX_ INDEX = 0xC0000000
index register to default

//restore the GRBM

(3) To write to “GC_USER_SHADER_PIPE_CONFIG”
of both SEO and SE1 (i.e., shader engine 1), the following
exemplary instructions can be used:

mmGC_USER_SHADER_ PIPE_ CONFIG = OxFCOCO0000
//disable SIMD3 & SIMD?2 of both SEO and SE1

SIMDs enabled per shader engine (e.g., SEO, SE1, etc.) can
be changed on the fly, as long as at least one SIMD is left
enabled for each shader engine in each subset to which work
is being applied. In other words, for example, if SIMDs are
partitioned for different types of work, i.e., two SIMDs per
side for tessellation shaders, and the remaining SIMDs shared
between vertex and pixel work, one of the two SIMDs for
tessellation shaders can be left enabled, and one of the
remaining SIMDs for pixel and vertex enabled.

FIG. 3C is a flowchart illustrating an exemplary overall
operation, according to an embodiment.

In step 302, a required performance level for a given pro-
cessing operation is determined. As an example, such a per-
formance level can be application, condition, workload or
requirement dependent.

In step 304, one or more registers are configured to enable
and disable different SIMDs in shader engines. As an
example, such a configuration can be achieved by program-
ming the shader engines separately using a GRBM index
register as illustrated in FIG. 3B.

In step 306, one or more registers are enabled or disabled
based on the registers configured in step 304.

The following section illustrates exemplary plots that can
aid embodiments in making tradeoff decisions between per-
formance and power savings.

Power Savings Vs Performance Impact

When a SIMD is enabled, it consumes power. With
increased processing activity, the SIMD would consume even
more power. Conversely, with less activity, the SIMD would
consume less power. In an idle state, the SIMD would con-
sume minimal but a measurable amount of power based on
the size of the SIMD (e.g., area, cell count etc).

The plot of FIG. 4A shows a linear increase in core power
with an increase in the number of enabled SIMDs. The plot
depicts a scenario where an application is SIMD bound. In
other words, the application is a power intensive application
that consumes all available SIMD resources.

A general assumption is that performance of a graphics
processing unit would increase with an increase in a number
of SIMDs. However, this statement can generally be true for
intensive processing tasks. In several scenarios, depending on
load conditions, conventional approaches may waste power
as they keep all SIMDs enabled even with light processing
loads. An example of SIMD load balancing is described in the
application entitled “Method and System for Load Optimiza-
tion for Power” Ser. No. 12/839,962, which is incorporated
herein by reference as though set forth in its entirety.

US 9,311,102 B2

7

The following sections discuss exemplary SIMD perfor-
mance per watt plots for different types of applications.
(1) Application with an Ideal Load

FIG. 4B illustrates a performance per watt plot for an
application with an ideal load. As shown in FIG. 4B, as the
number of SIMDs increase, the performance per watt of the
graphics processing unit increases linearly with constant
power consumption per SIMD.

(2) Application with a Balanced Load

FIG. 4C illustrates a performance per watt plot for an
application with a balanced load. As shown in FIG. 4C, as the
number of SIMDs increases, performance per watt is sus-
tained.

(3) Application with Realistic L.oads

Often, in realistic scenarios, processing loads are such that
performance per watt characteristics lie in between the char-
acteristics for an ideal load and characteristics for a balanced
load. As shown in FIG. 4D, with increase in SIMDs, perfor-
mance per watt increases at first but later saturates and either
remains at a constant level or may even reduce. When perfor-
mance per watt reduces, more power is consumed at a rela-
tively lower performance gain. This can be seen from the light
and medium/heavy load plots shown in FIGS. 4E and 4F
respectively.

Savings for Each Mode of Operations

As can be seen from plots in FIGS. 4A-4F, power savings
in accordance with the embodiments would vary from appli-
cation to application. In many applications, for example,
embodiments save power without compromising perfor-
mance. Such applications include DVD playback applica-
tions where SIMD processing load can be light.

As a purely illustrative non-limiting example, on an AMD
R770 processor with “eclk=875 MHz” and “mclk=900
MHz,” a per SIMD power consumption is approximately 4.5
watts with heavy loads. With lighter loads, the power con-
sumption would reduce due to clock gating and dynamic
SIMD control, in accordance with the embodiments. For
example, if it is required to clamp power to certain level then
reducing the number of SIMDs at heavy loads would yield
significant savings. In an embodiment, applications can also
determine a number of SIMDs that are enabled or disabled in
a graphics processing unit.

Dynamic Medium Grain Clock Gating

As discussed above, in conventional approaches, clocking
of all SIMD units in a shader complex is either enabled or
disabled simultaneously. In many applications, not all SIMDs
are assigned work. However, conventional approaches con-
tinue to actively provide clocking signals to such SIMDs.
This approach increases power consumption of a graphics
processing unit and is inefficient. Conventional approaches
can include static clock gating for shader complex blocks in
which, when a request is initiated by a SPI, clocks of shader
complex blocks are turned-on, one by one, with a di/dt (i.e.,
rate of change of current) avoidance count delay. Once
started, the clocks keep clocking for the entire shader com-
plex even if there is no work for many blocks inside the shader
complex. In other words, only a few SIMDs are active at any
given time. Once work is completed by the shader complex,
the clocks are shut-off automatically using the di/dt avoid-
ance count delay. Thus, in conventional approaches, clock
gating is static in nature, and treats the shader complex as a
single system.

In contrast to conventional approaches, embodiments of
the invention achieve dynamic grain (e.g., dynamic medium
grain) clock gating of individual SIMDs in a shader complex.
Switching power is reduced by shutting down clock trees to
unused logic, and by providing a clock on demand mecha-

25

40

45

50

8

nism (e.g., a true clock on demand mechanism). In this way,
clock gating can be enhanced to save switching power for a
duration of time when SIMDs are idle (or assigned no work).

Embodiments of the present invention also include
dynamic control of clocks to each SIMD in a shader complex.
Each SIMD is treated as shader complex sub-system that
manages its own clocks. Dynamic control for each block/tile
in an SIMD is also provided. Clocking can start before actual
work arrives at SIMDs and can stay enabled until all the work
has been completed by the SIMDs.

Dynamic medium grain clock gating, according to the
embodiments, causes negligible performance impact to the
graphics processing unit. Embodiments of the present inven-
tion can also be used to control power of SIMDs by power
gating switches and thus save leakage power of SIMDs.

Various aspects of the embodiments of the invention can be
implemented by software, firmware, hardware (or hardware
represented by software such as, for example, Verilog or
hardware description language instructions), or a combina-
tion thereof. FIG. 1A is an illustration of an example com-
puter system in which the present invention, or portions
thereof, can be implemented as computer-readable code. It
should be noted that the simulation, synthesis and/or manu-
facture of the various embodiments of this invention may be
accomplished, in part, through the use of computer readable
code, including general programming languages (such as C or
C++), hardware description languages (HDL) such as, for
example, Verilog HDL, VHDL, Altera HDL (AHDL), or
other available programming and/or schematic capture tools
(such as circuit capture tools). This computer readable code
can be disposed in any known computer usable medium
including a semiconductor, magnetic disk, optical disk (such
as CDROM, DVD-ROM) and as a computer data signal
embodied in a computer usable (e.g., readable) transmission
medium (such as a carrier wave or any other medium such as,
for example, digital, optical, or analog-based medium). As
such, the code can be transmitted over communication net-
works including the Internet and internets. It is understood
that the functions accomplished and/or structure provided by
the systems and techniques described above can be repre-
sented in a core (such as a GPU core) that is embodied in
program code and may be transformed to hardware as part of
the production of integrated circuits.

CONCLUSION

Itis to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections, is intended to be
used to interpret the claims. The Summary and Abstract sec-
tions may set forth one or more but not all exemplary embodi-
ments of the present invention as contemplated by the inven-
tor(s), and thus, are not intended to limit the present invention
and the appended claims in any way.

The present invention has been described above with the
aid of functional building blocks illustrating the implemen-
tation of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries can be defined so long as the speci-
fied functions and relationships thereof are appropriately per-
formed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the invention that others
can, by applying knowledge within the skill of the art, readily
modify and/or adapt for various applications such specific
embodiments, without undue experimentation, without
departing from the general concept of the present invention.

US 9,311,102 B2

9

Therefore, such adaptations and modifications are intended to
be within the meaning and range of equivalents of the dis-
closed embodiments, based on the teaching and guidance
presented herein. It is to be understood that the phraseology or
terminology herein is for the purpose of description and not of
limitation, such that the terminology or phraseology of the
present specification is to be interpreted by the skilled artisan
in light of the teachings and guidance.

The breadth and scope of the present invention should not
be limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:

1. A method for use in a graphics processing unit (GPU)
comprising:

determining a condition related to the power consumption

of'the GPU, wherein the condition is based on any one or
a combination of temperature, current, and processor
activity;
programming a configuration register to disable one or
more single instruction multiple data (SIMD) units in a
shader pipeline in response to the determined condition;

dynamically disabling the one or more SIMD units in the
shader pipeline based on the determined condition,
wherein the dynamically disabling the one or more
SIMD units includes providing dynamic medium grain
clock gating to the one or more SIMD units and dynamic
control of one or more clocks to each SIMD unit; and

assigning one or more work threads to the one or more
active SIMD units in the shader pipeline, wherein the
work threads are assigned to one or more active SIMD
units without having to flush the shader pipeline.

2. The method of claim 1, wherein the dynamically dis-
abling comprises disabling the one or more SIMD units dur-
ing an active execution period and independent of activity in
a shader engine associated with the one or more SIMD units.

3. The method of claim 1, further comprising:

disabling a dispatch of one or more work threads to the one

or more disabled SIMD units; and

determining when one or more pending work threads in the

one or more disabled SIMD units are cleared.

4. The method of claim 1, further comprising: setting one
or more bit indices of the configuration register based on one
or more of a processing work load, an application require-
ment, and the one or more operating conditions.

5. The method of claim 1, wherein the dynamically dis-
abling further comprises disabling one or more clock trees to
unused logic in the one or more SIMD units.

6. The method of claim 1, further comprising: determining
a power level for a processing application.

7. The method of claim 6, further comprising: determining
a number of the one or more SIMD units to execute the
processing application.

8. The method of claim 1, wherein the configuration reg-
ister includes one or more bit indices that are set based on a
logical operation performed between one or more bit indices
of a user programmable setting register and one or more
corresponding bit indices of a fuse mask setting register.

5

10

15

20

25

30

35

40

45

50

55

60

10

9. The method of claim 1, wherein the dynamically dis-
abling further comprises clock gating the one or more SIMD
units for a duration of time that the one or more SIMD units
are idle.

10. The method of claim 1, further comprising: clock gat-
ing the one or more disabled SIMD units after the one or more
disabled SIMD units drain a pending work thread.

11. A system comprising:

a graphics processing unit (GPU) configured to determine

a condition related to the power consumption of the
GPU, wherein the condition is based on any one or a
combination of temperature, current, and processor
activity;

the GPU further configured to program a configuration

register to disable one or more single instruction mul-
tiple data (SIMD) units in a shader pipeline in response
to the determined condition;

the GPU further configured to dynamically disable the one

or more SIMD units in the shader pipeline based on the
determined condition, wherein the dynamically dis-
abling the one or more SIMD units includes providing
dynamic medium grain clock gating to the one or more
SIMD units and dynamic control of one or more clocks
to each SIMD unit; and

the GPU is further configured to assign one or more work

threads to the one or more active SIMD units in the
shader pipeline, wherein the work threads are assigned
to one or more active SIMD units without having to flush
the shader pipeline.

12. The system of claim 11, wherein the GPU is further
configured to disable the one or more SIMD units during an
active execution period and independent of activity in a
shader engine associated with the one or more SIMD units.

13. The system of claim 11, wherein the GPU is further
configured to determine a required power level for a process-
ing application.

14. A non-transitory computer-readable medium that
stores instructions adapted to be executed by a processor to:

determine a condition related to the power consumption of

the GPU, wherein the condition is based on any one or a
combination of temperature, current, and processor
activity;
program a configuration register to disable one or more
single instruction multiple data (SIMD) units in a shader
pipeline in response to the determined condition;

dynamically disable the one or more SIMD units in the
shader pipeline based on the determined condition,
wherein the dynamically disabling the one or more
SIMD units includes providing dynamic medium grain
clock gating to the one or more SIMD units and dynamic
control of one or more clocks to each SIMD unit; and

assign one or more work threads to one or more active
SIMD units in the shader pipeline, wherein the work
threads are assigned to the one or more active SIMD
units without having to flush the shader pipeline.

15. The non-transitory computer-readable medium of
claim 14, further comprising instructions adapted to be
executed by the processor to: determine a required power
level for a processing application.

16. The non-transitory computer-readable medium of
claim 15, further comprising instructions adapted to be
executed by the processor to: determine a number of the one
or more SIMD units to execute the processing application.

#* #* #* #* #*

